

47 REAL PROJECTS ANALYZED

The AI Implementation Autopsy Report

What Actually Worked (And Why Most Failed) — The
Post-Mortem Nobody Had the Courage to Write

JJ Shay
AI Strategy & M&A Executive

The Number Nobody Wants to Publish

73%

AI PROJECTS FAIL TO REACH
PRODUCTION

\$4.6B

WASTED ON FAILED AI
INITIATIVES (2023)

18

AVERAGE MONTHS BEFORE
FAILURE ADMITTED

“
Everyone publishes success stories. This guide is different — it's the honest failure analysis that vendors won't show you.

Why This Report Exists

The Data

47 Real implementations analyzed across industries

89 Post-mortem interviews with project leads

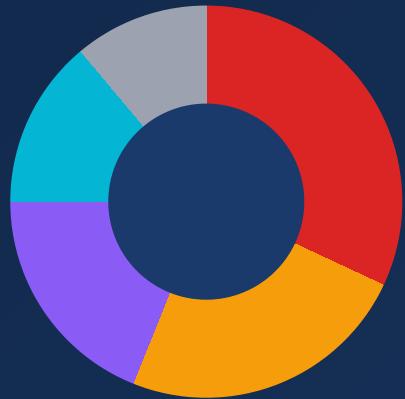
\$127M Total investment represented in study

The Promise

By the end of this guide, you'll know:

- ✓ The 7 patterns that kill AI projects
- ✓ Warning signs visible in month 1
- ✓ How to run a pre-mortem before you start
- ✓ Kill criteria that save millions

The 7 Failure Patterns



■ Solution in Search of Problem	32%
■ The Data Delusion	24%
■ POC Purgatory	19%
■ Talent Mismatch	14%
■ Other (Sponsor, Integration, Ethics)	11%

56% of failures happen before a single line of ML code is written.

Solution in Search of a Problem

Starting with "we need AI" instead of "we need to solve X"

⚠️ "Our competitors are using AI" — Fear-driven initiatives without clear business case

⚠️ "The CEO read an article" — Top-down mandates without problem validation

⚠️ "We have this data, let's do something with it" — Asset-first thinking vs. outcome-first

The Fix

Before any AI project, answer: "What specific decision will be made better, faster, or cheaper?"

The Data Delusion

Assuming the data exists and is clean when it isn't

67%

PROJECTS DISCOVER DATA ISSUES AFTER KICKOFF

3.2x

AVERAGE DATA PREP TIME VS. ESTIMATE

"We have 10 years of data" — Yes, but in 47 different formats across 12 systems

"Our data is in a data warehouse" — Stored ≠ labeled ≠ ML-ready

POC Purgatory

Successful pilots that never scale to production

- MONTH 3
"The POC is working great! 94% accuracy in the lab."
- MONTH 6
"We're working on productionization. Just need a few more integrations."
- MONTH 12
"Still in POC phase. Exploring alternative approaches."
- MONTH 18
"Project deprioritized due to changing business needs."

POCs are designed to prove concepts. They're not designed to prove scalability, maintainability, or business value.

Talent & Sponsorship

Pattern #4: Talent Mismatch (14%)

- ⚠ Data scientists hired, but needed ML engineers

- ⚠ PhD researchers, but needed production builders

- ⚠ Junior team on senior-complexity problem

Pattern #5: Sponsor Disappearance (8%)

- ⚠ Executive champion leaves mid-project

- ⚠ Reorg shifts priorities

- ⚠ Budget owner changes strategy

SLIDE 09 – AUTOPSY #1

The \$4M Chatbot Nobody Used

FORTUNE 500 COMPANY	
Customer Service AI	
Investment	\$4.2M
Timeline	18 months
Expected ROI	\$12M/year
Actual ROI	-\$4.2M

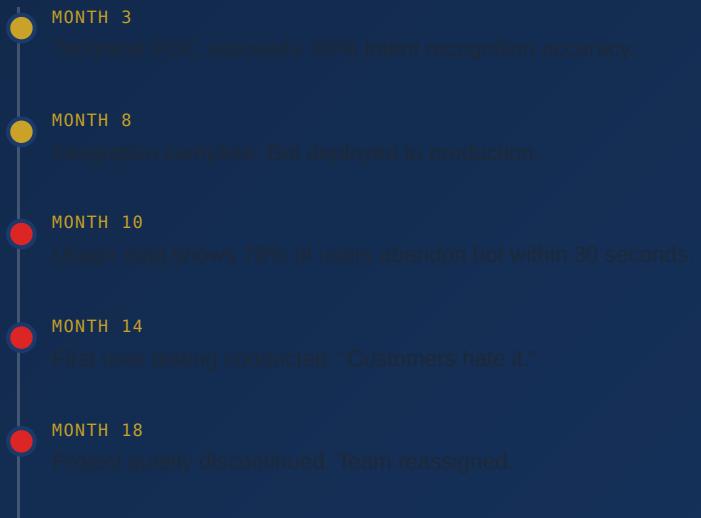
The Setup

A Fortune 500 company invested in an AI chatbot to deflect 40% of customer service calls.

Team: Top-tier vendor + internal IT + Big 4 consulting

Technology: State-of-the-art NLP, custom training on 5 years of call transcripts

What Went Wrong



"We built exactly what we specified. We just specified the wrong thing."

— Project Lead, Exit Interview

Lessons Learned

- ✓ **User testing from Week 2, not Month 14.** Real users would have identified the UX problem immediately.
- ✓ **Define success as user adoption, not technical deployment.** The model worked. The product didn't.
- ✓ **Establish kill criteria upfront.** "If usage drops below X by Month Y, we pivot or kill."

The Core Mistake

They optimized for technical metrics (intent accuracy) instead of business metrics (call deflection). **A 99% accurate bot that nobody uses has 0% business value.**

The Predictive Model That Backfired

MID-MARKET MANUFACTURER	
Demand Forecasting ML	
Investment	\$1.8M
Goal	-23% inventory costs
Actual Result	\$8M in losses

What Happened

The model recommended aggressive inventory cuts based on historical demand patterns.

Problem: Training data didn't include COVID-era demand volatility.

Result: Stockouts during demand surge → \$8M in lost sales, customer churn, emergency air freight.

The Missing Question

Nobody Asked:

"What's the cost of the model being wrong?"

- ✓ **Asymmetric risk analysis before deployment.** Understocking cost 4x more than overstocking.
- ✓ **Human-in-the-loop for high-stakes decisions.** Model should recommend, not decide.
- ✓ **Test for "black swan" scenarios.** What happens when the model encounters data it's never seen?

The model was technically excellent. It just couldn't handle reality.

The AI-First Startup That Almost Died

The Vision

 \$50M Series B raised on "AI-native" positioning

 \$3M Monthly burn, mostly AI infrastructure

 18 Months of proprietary AI development

The Crisis

ChatGPT launched.

80% of their "proprietary AI" became table stakes overnight.

8 months of runway left. No clear pivot.

We were building the car while Tesla was building the assembly line.

— Co-Founder

SLIDE 15 – AUTOPSY #3

The Save

PIVOT STRATEGY	
Workflows on LLMs	
Old Model	Build proprietary AI
New Model	Orchestrate foundation models
Outcome	Survived (60% workforce cut)

The Lesson

- ✓ Build ON foundation models, not AROUND them
- ✓ Your moat is domain expertise + workflows, not raw AI
- ✓ Monitor foundation model releases as strategic threats

The Resurrection Playbook

12 of 47 "failed" projects were salvaged and became successes.

💡

Most AI failures are positioning failures, not technology failures. The tech often works — it's just solving the wrong problem.

The Pre-Mortem Framework

Run this exercise before ANY AI project kickoff.

The Exercise

"Imagine it's 18 months from now and this project has failed spectacularly. Why?"

Ask Your Team:

- 1 What data assumption could be wrong?
- 2 Who might leave that would kill this?
- 3 What market change could make this irrelevant?

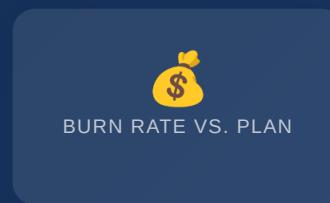
Ask Leadership:

- 4 What budget cut would kill this?
- 5 What would make us deprioritize this?
- 6 What's our actual risk tolerance?

SLIDE 18

AI Project Health Dashboard

8 leading indicators to track monthly



If 3+ indicators are red for 2+ consecutive months → escalate immediately

SLIDE 19

The Kill Criteria Decision Tree

Define these BEFORE the project starts — not when you're \$2M in.

THE TAKEAWAY

The Best AI Teams Fail Fast.

The worst fail slow and expensive.

Define your kill criteria in the first project meeting, not the last.

Want the full framework + templates?

DM me "AUTOPSY" on LinkedIn →

JJ
JJ Shay
linkedin.com/in/jjshay